OmROn

MOS FET Relays

Slim, 2.1-mm High Relay Incorporating a MOS FET Optically Coupled with an Infrared LED in a Miniature, Flat SOP Package

- Upgraded G3VM-S3 Series.
- Continuous load current of 110 mA .
- Dielectric strength of $1,500 \mathrm{Vrms}$ between I/O.

Application Examples
NEW TI

- Broadband systems
- Measurement devices
- Data loggers
- Amusement machines

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO	Surface-mounting terminals	350 VAC	G3VM-351H	75	---
			---	2,500	

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Note: The actual product is marked differently from the image shown

■Terminal Arrangement/Internal Connections (Top View)

 G3VM-351H

Actual Mounting Pad Dimensions (Recommended Value, Top View) G3VM-351H

■ Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item			Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current		I_{F}	50	mA	
	Repetitive peak LED forward current		I_{FP}	1	A	100μ s pulses, 100 pps
	LED forward current reduction rate		$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage		V_{R}	5	V	
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Output dielectric strength		$\mathrm{V}_{\text {OFF }}$	350	V	
	Continuous load current	Connection A	I_{0}	110	mA	
		Connection B		110		
		Connection C		220		
	ON current reduction rate	Connection A	$\triangle \mathrm{ION}^{\prime}{ }^{\circ} \mathrm{C}$	-1.1	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
		Connection B		-1.1		
		Connection C		-2.2		
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)			$\mathrm{V}_{\text {I- }}$	1,500	Vrms	AC for 1 min
Operating temperature			T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature			$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature (10 s)			---	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.
Connection Diagram

Connection A	
Connection B	
Connection C	

\square Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item			Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage		V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current		I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals		$\mathrm{C}_{\text {T }}$	---	30	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current		I_{FT}	---	1	3	mA	$\mathrm{I}_{\mathrm{O}}=110 \mathrm{~mA}$
Output	Maximum resistance with output ON	Connection A	$\mathrm{R}_{\text {ON }}$	---	25	35	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=110 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s} \end{aligned}$
				---	35	50	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=110 \mathrm{~mA} \end{aligned}$
		Connection B		---	28	40	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=110 \mathrm{~mA} \end{aligned}$
		Connection C		---	14	20	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=220 \mathrm{~mA} \end{aligned}$
	Current leakage when the relay is open		$\mathrm{I}_{\text {LEAK }}$	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=350 \mathrm{~V}$
Capacity between I/O terminals			$\mathrm{C}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance			$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn-ON time			tON	---	0.3	1.0	ms	
Turn-OFF time			tOFF	---	0.1	1.0	ms	$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$ (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions
Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}	---	--	280	V
Operating LED forward current	I_{F}	5	10	25	mA
Continuous load current	I_{O}	---	--	100	mA
Operating temperature	T_{a}	-20	--	65	${ }^{\circ} \mathrm{C}$

Engineering Data

Load Current vs. Ambient Temperature G3VM-351H

